首页> 外文OA文献 >Scale Invariance of Immune System Response Rates and Times: Perspectives on Immune System Architecture and Implications for Artificial Immune Systems
【2h】

Scale Invariance of Immune System Response Rates and Times: Perspectives on Immune System Architecture and Implications for Artificial Immune Systems

机译:免疫系统反应率和时间的尺度不变性:视角   免疫系统结构及其对人工免疫系统的启示

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Most biological rates and times decrease systematically with organism bodysize. We use an ordinary differential equation (ODE) model of West Nile Virusin birds to show that pathogen replication rates decline with host body size,but natural immune system (NIS) response rates do not change systematicallywith body size. This is surprising since the NIS has to search for smallquantities of pathogens through larger physical spaces in larger organisms, andalso respond by producing larger absolute quantities of antibody in largerorganisms. We call this scale-invariant detection and response. We hypothesizethat the NIS has evolved an architecture to efficiently neutralize pathogens.We investigate a range of architectures using an Agent Based Model (ABM). Wefind that a sub-modular NIS architecture, in which lymph node number and sizeboth increase sublinearly with body size, efficiently balances the tradeoffbetween local pathogen detection and global response using antibodies. Thisleads to nearly scale-invariant detection and response, consistent withexperimental data. Similar to the NIS, physical space and resources are alsoimportant constraints on Artificial Immune Systems (AIS), especiallydistributed systems applications used to connect low-powered sensors usingshort-range wireless communication. We show that AIS problems, like distributedrobot control, will also require a sub-modular architecture to efficientlybalance the tradeoff between local search for a solution and global response orproliferation of the solution between different components. This research haswide applicability in other distributed systems AIS applications.
机译:大多数生物发生率和时间随生物体大小而系统地降低。我们使用西尼罗河病毒鸟的微分方程(ODE)模型显示病原体复制率随宿主体型而下降,但自然免疫系统(NIS)响应率不会随体型而系统地改变。这是令人惊讶的,因为NIS必须通过较大生物体中较大的物理空间来寻找小数量的病原体,并且还必须通过在较大生物体中产生更大绝对量的抗体来做出反应。我们称这种尺度不变的检测和响应。我们假设NIS已经进化了一种架构来有效地中和病原体。我们使用基于代理的模型(ABM)研究了一系列架构。我们发现亚模块化NIS体系结构有效地平衡了局部病原体检测与使用抗体的整体应答之间的折衷,在该体系中,淋巴结数目和大小均随体型的增加而线性增加。这导致几乎不变的检测和响应,与实验数据一致。与NIS相似,物理空间和资源也是人工免疫系统(AIS)的重要限制,尤其是用于通过短距离无线通信连接低功率传感器的分布式系统应用程序。我们证明,像分布式机器人控制一样,AIS问题也将需要一个子模块化体系结构,以有效平衡解决方案的本地搜索与不同组件之间的全局响应或解决方案扩散之间的权衡。该研究在其他分布式系统AIS应用中具有广泛的适用性。

著录项

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号